为了研究ACLY和ACSS2在BAT中的作用,作者构建了BAT组织特异性敲除Acly或Acss2的转基因小鼠模型(AclyBATKO和Acss2BATKO)。利用该模型,作者发现ACLY的缺失导致小鼠BAT发生“白化”、组织质量增加,并在寒冷环境中体温迅速下降。相比之下,ACSS2的缺失并未引起类似的生理变化,表明ACLY在BAT产热和应对寒冷刺激中的关键性。此外,AclyBATKO小鼠BAT“白化”表明脂质发生累积,但脂质合成相关基因的表达反而降低,暗示了此时FAO功能被抑制,而非脂质合成增加,导致了BAT变白。这些变化还伴随着新生脂质合成、葡萄糖摄取、Glut4表达以及脂质摄取相关基因的表达下调,进一步表明BAT中ACLY缺失抑制了FAO活性。
研究还发现,Acly的缺失严重损害了BAT中的线粒体功能,表现为UCP1、ETC亚基以及多种线粒体相关磷脂水平的下降,但未见线粒体超微结构的显著变化。此外,ACLY在BAT中的缺失还显著降低了线粒体生物发生和代谢相关的关键基因表达,进而导致产热能力减弱,并伴随耗氧率和细胞外酸化率的下降。因此,ACLY在维持BAT中线粒体功能和解偶联呼吸中发挥了关键作用,进而调控了BAT的产热活性。
长期剧烈的寒冷应激会在皮下白色脂肪组织(WAT)中诱导棕色样脂肪细胞,称为米色或亮棕色脂肪细胞,这一过程称为WAT的“棕化”。为了检测ACLY是否也对WAT的棕化至关重要,作者将脂肪组织Acly特异性敲除小鼠(AclyFATKO)置于6°C的寒冷环境4周,发现缺乏ACLY的小鼠无法在寒冷环境中形成米色/亮棕色脂肪细胞,且伴随着UCP1、线粒体相关基因及产热基因的表达降低。因此,ACLY不仅在BAT中调节产热功能,还在寒冷应激下影响WAT的棕化过程。
进一步探究ACLY缺失影响产热的机制后,作者发现诱导ACLY敲除的小鼠中编码线粒体、呼吸链和脂质代谢的基因下调,而炎症标志物基因上调。同时,ISR(整合应激反应)和线粒体质量控制通路也被激活,从而抑制产热并诱导代谢重塑。可见,ACLY的缺失通过触发代谢应激和ISR途径对棕色脂肪组织的功能产生了广泛的影响。接下来,作者对AclyBATKO小鼠进行了酰基辅酶A谱分析和[13C]葡萄糖同位素示踪实验,发现ACLY缺失导致了棕色脂肪组织中TCA循环过载,进而激发ISR,表明ACLY能够通过平衡TCA循环的负荷,缓解代谢应激并维持BAT的正常功能。
值得注意的是,双敲除Fasn和Acly能够抵消ACLY缺失导致的BAT白化和代谢应激。Fasn和Acly的双敲除通过调节碳代谢途径,恢复了乙酰辅酶A的水平,缓解了ACLY缺失引发的代谢失调。这表明Fasn与ACLY之间的互作对于调节乙酰辅酶A的利用及碳通量的平衡至关重要。此外, Fasn和Acly的双敲除显著抑制了与代谢压力相关的ISR信号通路的激活和炎症反应。因此,BAT中Fasn和Acly的双敲除通过在产热过程中重新平衡进入线粒体的碳通量及TCA循环活性,挽救了Acly缺失引起的代谢失衡。
综上所述,本研究揭示了ATP-柠檬酸裂解酶(ACLY)通过缓解代谢应激,维持棕色脂肪组织产热功能的关键作用。ACLY的缺失会引发TCA循环超负荷并激活整合应激反应,最终抑制产热功能,而同时敲除Fasn和ACLY能够激活替代代谢途径,恢复正常产热功能。这项研究为理解BAT中脂肪酸合成与氧化之间的复杂关系提供了新的见解。